Example |
ClassificationLib clib = new ClassificationLib(); double[][] input_sequence = {{0, 0}, {0, 1}, {1, 0}, {1, 1}}; int[] target = {0, 1, 1, 0}; // 2 class labels double miu=0.1; int[] hidden_unit={5}; //1 hidden layer with 5 hidden units int epoch=10000; // Activation function using Sigmoid NN nn = clib.NeuralNetwork(input_sequence, target, miu, hidden_unit); nn.Learning(epoch); |
Output |
Learning process is running.... -------------------------------------------------- 10000 epoch .................................................. Iteration for learning: 10000 epoch Final MSE: 0.0037 Accuracy: 100.0% Error ratio: 0.0% <Learning process done> |
Example |
ClassificationLib clib = new ClassificationLib(); double[][] input_sequence = {{0, 0}, {0, 1}, {1, 0}, {1, 1}}; int[] target = {0, 1, 1, 2}; // 3 class labels double miu=0.1; int[] hidden_unit={5}; //1 hidden layer with 5 hidden units int epoch=10000; // Activation function using Sigmoid NN nn = clib.NeuralNetwork(input_sequence, target, miu, hidden_unit); nn.Learning(epoch); |
Output |
Learning process is running.... -------------------------------------------------- 10000 epoch .................................................. Iteration for learning: 10000 epoch Final MSE: 0.0024 Accuracy: 100.0% Error ratio: 0.0% <Learning process done> |
Example |
ClassificationLib clib = new ClassificationLib(); double[][] input_sequence = {{0, 0}, {0, 1}, {1, 0}, {1, 1}}; int[] target = {0, 1, 1, 0}; double miu=0.1; int[] hidden_unit={5, 3}; //1st hidden layer with 5 hidden units, 2nd hidden layer with 3 hidden units int epoch=10000; // Activation function using Sigmoid NN nn = clib.NeuralNetwork(input_sequence, target, miu, hidden_unit); nn.Learning(epoch); |
Output |
Learning process is running.... -------------------------------------------------- 10000 epoch .................................................. Iteration for learning: 10000 epoch Final MSE: 0.0037 Accuracy: 100.0% Error ratio: 0.0% <Learning process done> |
Example |
ClassificationLib clib = new ClassificationLib(); double[][] input_sequence = {{0, 0}, {0, 1}, {1, 0}, {1, 1}}; int[] target = {0, 1, 1, 0}; double miu=0.1; int[] hidden_unit={5}; int epoch=10000; NN nn = clib.NeuralNetwork(input_sequence, target, miu, hidden_unit); //To see MSE Gradient Descent nn.Learning(epoch, true); |
Output |
Learning process is running.... -------------------------------------------------- 10000 epoch .................................................. Iteration for learning: 10000 epoch Final MSE: 0.0037 Accuracy: 100.0% Error ratio: 0.0% <Learning process done> ![]() |
Example |
ClassificationLib clib = new ClassificationLib(); double[][] input_sequence = {{0, 0}, {0, 1}, {1, 0}, {1, 1}}; int[] target = {0, 1, 1, 0}; double miu=0.1; int[] hidden_unit={5}; int epoch=10000; NN nn = clib.NeuralNetwork(input_sequence, target, miu, hidden_unit); nn.Learning(epoch); //To test with the training data nn.viewTesting(); |
Output |
Learning process is running.... -------------------------------------------------- 10000 epoch .................................................. Iteration for learning: 10000 epoch Final MSE: 0.003 Accuracy: 100.0% Error ratio: 0.0% <Learning process done> 0: correct --> [0.9699 0.0293] = 0 1: correct --> [0.028 0.974] = 1 2: correct --> [0.0495 0.9515] = 1 3: correct --> [0.9536 0.0448] = 0 |
Example |
ClassificationLib clib = new ClassificationLib(); double[][] input_sequence = {{0, 0}, {0, 1}, {1, 0}, {1, 1}}; int[] target = {0, 1, 1, 0}; double miu=0.1; int[] hidden_unit={5}; int epoch=10000; NN nn = clib.NeuralNetwork(input_sequence, target, miu, hidden_unit); nn.Learning(epoch); //To save learning parameters in a file with .nn extension nn.save("my_nn"); |
Output |
Learning process is running.... -------------------------------------------------- 10000 epoch .................................................. Iteration for learning: 10000 epoch Final MSE: 0.0037 Accuracy: 100.0% Error ratio: 0.0% <Learning process done> Learning parameters saved succesfully in my_nn.nn |
Example |
ClassificationLib clib = new ClassificationLib(); double[][] input_sequence = {{0, 0}, {0, 1}, {1, 0}, {1, 1}}; int[] target = {0, 1, 1, 0}; double miu=0.1; int[] hidden_unit={5}; NN nn = clib.NeuralNetwork(input_sequence, target, miu, hidden_unit); //To load learning parameters from a file with .nn extension nn.load("my_nn"); nn.viewTesting(); |
Output |
Learning parameters loaded succesfully from my_nn.nn 0: correct --> [0.9559 0.0416] = 0 1: correct --> [0.0387 0.9619] = 1 2: correct --> [0.0392 0.961] = 1 3: correct --> [0.9622 0.0395] = 0 |
Example |
ClassificationLib clib = new ClassificationLib(); double[][] input_sequence = {{0, 0}, {0, 1}, {1, 0}, {1, 1}}; int[] target = {0, 1, 1, 0}; double miu=0.1; int[] hidden_unit={5}; NN nn = clib.NeuralNetwork(input_sequence, target, miu, hidden_unit); //To load learning parameters from a file with .nn extension nn.load("my_nn"); nn.viewMSE(); |
Output |
Learning parameters loaded succesfully from my_nn.nn![]() |
Example |
VectorLib vlib = new VectorLib(); ClassificationLib clib = new ClassificationLib(); double[][] input_sequence = {{0, 0}, {0, 1}, {1, 0}, {1, 1}}; int[] target = {0, 1, 1, 0}; double miu=0.1; int[] hidden_unit={5}; NN nn = clib.NeuralNetwork(input_sequence, target, miu, hidden_unit); //To load learning parameters from a file with .nn extension nn.load("my_nn"); double[][][] w=nn.getWeight(); double[][] wi=w[0]; vlib.view("W in input layer", wi); double[][] wh=w[1]; vlib.view("W in 1st hidden layer", wh); |
Output |
Learning parameters loaded succesfully from my_nn.nn W in input layer = 0.43825038209949224 2.3797197244449295 6.503495317107739 2.3375066689811144 -0.914394706921757 -0.9704703493723167 -6.193625128133846 -3.8114405983677835 4.701293933770404 1.8533936590108075 1.7071578689229496 -5.507367495088548 -4.701364284885894 -3.9626942802098184 -2.6096717307872583 W in 1st hidden layer = 0.14337971658122545 0.5244080821737196 1.011204678902618 -1.5654061146903337 6.780196378148771 -6.675024541139949 -6.260002785410893 6.066026640923934 3.631455355952464 -3.8321165438650406 -2.265525113190952 2.1406898058511126 |
Example |
VectorLib vlib = new VectorLib(); ClassificationLib clib = new ClassificationLib(); double[][] input_sequence = {{0, 0}, {0, 1}, {1, 0}, {1, 1}}; int[] target = {0, 1, 1, 0}; double miu=0.1; int[] hidden_unit={5}; int epoch=10000; NN nn = clib.NeuralNetwork(input_sequence, target, miu, hidden_unit); nn.Learning(epoch); double err=nn.getError(); vlib.view("Error ratio (%)", err); |
Output |
Learning process is running.... -------------------------------------------------- 10000 epoch .................................................. Iteration for learning: 10000 epoch Final MSE: 0.0037 Accuracy: 100.0% Error ratio: 0.0% <Learning process done> Error ratio (%) = 0.0 |
Example |
VectorLib vlib = new VectorLib(); ClassificationLib clib = new ClassificationLib(); double[][] input_sequence = {{0, 0}, {0, 1}, {1, 0}, {1, 1}}; int[] target = {0, 1, 1, 0}; double miu=0.1; int[] hidden_unit={5}; int epoch=10000; NN nn = clib.NeuralNetwork(input_sequence, target, miu, hidden_unit); nn.Learning(epoch); double acc=nn.getAccuracy(); vlib.view("Accuracy (%)", acc); |
Output |
Learning process is running.... -------------------------------------------------- 10000 epoch .................................................. Iteration for learning: 10000 epoch Final MSE: 0.0037 Accuracy: 100.0% Error ratio: 0.0% <Learning process done> Accuracy (%) = 100.0 |
Example |
VectorLib vlib = new VectorLib(); ClassificationLib clib = new ClassificationLib(); double[][] input_sequence = {{0, 0}, {0, 1}, {1, 0}, {1, 1}}; int[] target = {0, 1, 1, 0}; double miu=0.1; int[] hidden_unit={5}; int epoch=10000; NN nn = clib.NeuralNetwork(input_sequence, target, miu, hidden_unit); nn.Learning(epoch); double[] testingdata={0,1}; //To get output with testing data double[] output=nn.Testing(testingdata); vlib.view("Output", output); //To get output target with testing data int outputtarget=nn.getTestingClass(testingdata); vlib.view("Output target", outputtarget); |
Output |
Learning process is running.... -------------------------------------------------- 10000 epoch .................................................. Iteration for learning: 10000 epoch Final MSE: 0.0037 Accuracy: 100.0% Error ratio: 0.0% <Learning process done> Output = 0.03868347854348802 0.9618823315604247 Output target = 1 |
Example |
ClassificationLib clib = new ClassificationLib(); double[][] input_sequence = {{0, 0}, {0, 1}, {1, 0}, {1, 1}}; int[] target = {0, 1, 1, 0}; double miu=0.1; int[] hidden_unit={10, 5, 3}; int epoch=10000; // Activation function (sigmoid, tanh, relu, leakyrelu, swish) String[] af={"sigmoid"}; // all hidden layers use sigmoid NN nn = clib.NeuralNetwork(input_sequence, target, miu, hidden_unit,af); nn.Learning(epoch); |
Output |
Learning process is running.... -------------------------------------------------- 10000 epoch .................................................. Iteration for learning: 10000 epoch Final MSE: 0.0015 Accuracy: 100.0% Error ratio: 0.0% <Learning process done> |
Example |
ClassificationLib clib = new ClassificationLib(); double[][] input_sequence = {{0, 0}, {0, 1}, {1, 0}, {1, 1}}; int[] target = {0, 1, 1, 0}; double miu=0.1; int[] hidden_unit={10, 5, 3}; int epoch=10000; // Activation function (sigmoid, tanh, relu, leakyrelu, swish) String[] af={"sigmoid", "swish"}; // First and middle hidden layer use sigmoid, the last uses swish NN nn = clib.NeuralNetwork(input_sequence, target, miu, hidden_unit, af); nn.Learning(epoch); |
Output |
Learning process is running.... -------------------------------------------------- 10000 epoch .................................................. Iteration for learning: 10000 epoch Final MSE: 0.0015 Accuracy: 100.0% Error ratio: 0.0% <Learning process done> |
Example |
ClassificationLib clib = new ClassificationLib(); double[][] input_sequence = {{0, 0}, {0, 1}, {1, 0}, {1, 1}}; int[] target = {0, 1, 1, 0}; double miu=0.1; int[] hidden_unit={10, 5, 3}; int epoch=10000; // Activation function (sigmoid, tanh, relu, leakyrelu, swish) String[] af={"sigmoid", "tanh", "swish"}; // First hidden layer uses sigmoid, the middle uses tanh, the last uses swish NN nn = clib.NeuralNetwork(input_sequence, target, miu, hidden_unit, af); nn.Learning(epoch); |
Output |
Learning process is running.... -------------------------------------------------- 10000 epoch .................................................. Iteration for learning: 10000 epoch Final MSE: 0.0015 Accuracy: 100.0% Error ratio: 0.0% <Learning process done> |