Classification Library (ClassificationLib)


getErrorRatio
to calculate error ratio from classification test




FUNCTIONS

double - getErrorRatio(int[] resultclass, int[] correctclass)




EXAMPLES

Example VectorLib vlib=new VectorLib();
ClassificationLib clib=new ClassificationLib();
Dataset dataset=new Dataset("ruspini", "supervised");

int n_test = 5;
int[][] testdata = new int[n_test][dataset.dimensi];
int[] resultclass = new int[n_test];
int[] originalclass = new int[n_test];
int k = 4;

for (int i=0; i<n_test; i++) {
     int rand_row = vlib.getRandom(0, dataset.n);
     originalclass[i]=dataset.label[rand_row];
     testdata[i] = vlib.getRow(dataset.data, rand_row);
     resultclass[i] = clib.NearestNeighbors(dataset.data, dataset.label, testdata[i], k);
}
double error=clib.getErrorRatio(resultclass, originalclass);

vlib.view("Test data", testdata);
vlib.view("k of Nearest Neighbors", k);
vlib.view("Error ratio", error);
Output Test data =
13.0      69.0
117.0      115.0
15.0      75.0
72.0      31.0
108.0      116.0

k of Nearest Neighbors = 4

Error ratio = 0.0