Example |
VectorLib vlib=new VectorLib(); ClusteringLib clib=new ClusteringLib(); int[][] data={{20, 30}, {30, 20}, {30, 30}, {70, 70}, {80, 80}}; // Hierarchical K-Means using Centroid Linkage with 10 times K-means iteration int[] clusters=clib.HierarchicalKmeans(data, 2); vlib.view("Clusters", clusters); |
Output |
clusters = 0 0 0 1 1 |
Example |
VectorLib vlib=new VectorLib(); ClusteringLib clib=new ClusteringLib(); int[][] data={{20, 30}, {30, 20}, {30, 30}, {70, 70}, {80, 80}}; // Hierarchical K-Means using Average Linkage with 10 times K-means iteration int[] clusters=clib.HierarchicalKmeans("averagekmeans", data, 2); vlib.view("Clusters", clusters); |
Output |
clusters = 0 0 0 1 1 |
Example |
VectorLib vlib=new VectorLib(); ClusteringLib clib=new ClusteringLib(); int[][] data={{20, 30}, {30, 20}, {30, 30}, {70, 70}, {80, 80}}; // Hierarchical K-Means using Centroid Linkage with 5 times K-means iteration int[] clusters=clib.HierarchicalKmeans(data, 2, 5); vlib.view("Clusters", clusters); |
Output |
clusters = 0 0 0 1 1 |
Example |
VectorLib vlib=new VectorLib(); ClusteringLib clib=new ClusteringLib(); int[][] data={{20, 30}, {30, 20}, {30, 30}, {70, 70}, {80, 80}}; // Hierarchical K-Means using Single Linkage with 5 times K-means iteration int[] clusters=clib.HierarchicalKmeans("singlekmeans", data, 2, 5); vlib.view("Clusters", clusters); |
Output |
clusters = 0 0 0 1 1 |