Example |
VectorLib vlib=new VectorLib(); double[][] data={{5, 7, 2}, {3, 8, 5}, {4, 1, 3}, {9, 4, 2}, {4, 6, 5}}; double[][] output1=vlibNormalization("minmax", data, 0, 1); double[][] output2=vlibNormalization("zscore", data); int[] divider={1, 100, 10}; double[][] output3=vlibNormalization("decimalscaling", data, divider); double[][] output4=vlibNormalization("sigmoidal", data); double[][] output5=vlibNormalization("softmax", data, 1); vlib.view("Min-Max", output1); vlib.view("Z-Score", output2); vlib.view("Decimal Scaling", output3); vlib.view("Sigmoidal", output4); vlib.view("Softmax", output5); |
Output |
Min-Max = 0.3333333333333333 0.8571428571428571 0.0 0.0 1.0 1.0 0.16666666666666666 0.0 0.3333333333333333 1.0 0.42857142857142855 0.0 0.16666666666666666 0.7142857142857143 1.0 Z-Score = 0.0 0.7252406676228421 -1.0320936930842797 -0.9534625892455922 1.1281521496355322 1.1795356492391769 -0.4767312946227961 -1.6922282244532987 -0.29488391230979416 1.9069251784911845 -0.4834937784152282 -1.0320936930842797 -0.4767312946227961 0.322329185610152 1.1795356492391769 Decimal Scaling = 5.0 0.07 0.2 3.0 0.08 0.5 4.0 0.01 0.3 9.0 0.04 0.2 4.0 0.06 0.5 Sigmoidal = 0.9866142981402034 0.9981778976090466 0.7615941558848424 0.9051482535990917 0.9993292997381611 0.9866142981402034 0.9640275800519547 0.4621171571936048 0.9051482535990917 0.9997532108476526 0.9640275800519547 0.7615941558848424 0.9640275800519547 0.995054753681732 0.9866142981402034 Softmax = 0.5 0.9896136431734177 0.0015240848089748606 0.002495463705233926 0.9991659551687019 0.9993959449953425 0.04763452430320021 2.4116660929774056E-5 0.1355432772465239 0.9999937415031398 0.04574357830875184 0.0015240848089748606 0.04763452430320021 0.8834231922812504 0.9993959449953425 |