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Abstract— Clustering performance of the K-means greatly
relies upon the correctness of the initial centroids. Usually the
initial centroids for the K-means clustering are determined
randomly so that the determined centroids may reach the
nearest local minima, not the global optimum. This paper
proposes a new approach to optimizing the designation of
initial centroids for K-means clustering. This approach is
inspired by the thought process of determining a set of pillars’
locations in order to make a stable house or building. We
consider the pillars’ placement which should be located as far
as possible from each other to withstand against the pressure
distribution of a roof, as identical to the number of centroids
amongst the data distribution. Therefore, our proposed
approach in this paper designates positions of initial centroids
by using the farthest accumulated distance between them. First,
the accumulated distance metric between all data points and
their grand mean is created. The first initial centroid which has
maximum accumulated distance metric is selected from the
data points. The next initial centroids are designated by
modifying the accumulated distance metric between each data
point and all previous initial centroids, and then, a data point
which has the maximum distance is selected as a new initial
centroid. This iterative process is needed so that all the initial
centroids are designated. This approach also has a mechanism
to avoid outlier data being chosen as the initial centroids. The
experimental results show effectiveness of the proposed
algorithm for improving the clustering results of K-means
clustering.

I. INTRODUCTION

CLUSTERI.\IG is an effort to classify similar objects in the
same groups. Cluster analysis constructs good cluster
when the members of a cluster have a high degree of
similarity of each other (internal homogeneity) and are not
like members of other clusters (external homogeneity) [4, 9].
It means that the process to define a mapping D> C from
some data D={d,.d>,...d,} to some clusters C={c;.c;,...c,} on
similarity between d,. The applications of clustering are
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diversely in many fields such as data mining, pattern
recognition, image classification, biological sciences,
marketing, city-planning, document retrievals, etc.

The most well known, widely used and fast methods for
clustering is K-means algorithm developed by Mac Queen in
1967. The simplicity of K-means made this algorithm used
in various fields. K-means algorithm is a partitioning
clustering method that separates data into & mutually
excessive groups. Through such the iterative partitioning, K-
means clustering minimizes the sum of distance from each
data to its clusters. K-means clustering is very popular
because of its ability to cluster a kind of huge data, and also
outliers, quickly and efficiently. It remains a basic
framework for developing numerical or conceptual
clustering systems because various possibilities of distance
and prototype choice [2].

However, K-means clustering is very sensitive to the
designated initial starting points as cluster centers. K-means
clustering generates initial clusters randomly. If a randomly
designated initial starting point closes to a final cluster
center, then K-means clustering can find the final cluster
center. It however is not always. If a designated initial point
is far from the final cluster center, it will lead to incorrect
clustering results [11]. Because of initial starting points
generated randomly, K-means clustering does not guarantee
the unique clustering results [13]. K-means clustering is
difficult to reach global optimum, but only to one of local
minima [7]. The better results of K-means clustering can be
achieved after computing more than one times. However, it
is difficult to decide the execution limit, which gives the best
performance [17]. The cluster initialization algorithms for
K-means tried to apply heuristic mechanisms to avoid the
uncertainty of n times trial of K-means execution.

Several methods proposed to solve the cluster
initialization for K-means clustering. A recursive method for
initializing the means by running & clustering problems is
discussed by Duda and Hart (1973). A wvariation of this
method consists of taking the entire data into account and
then randomly perturbing it & times [13]. Bradley and
Fayyad (1998) proposed an algorithm that refines initial
points by analyzing distribution of the data and probability
of data density [3]. Pend et al. (1999) presented empirical
comparison for four initialization methods for K-means
clustering those are random, Forgy approach, Mac Queen
approach, and Kaufman approach [5].

Qur previous works have been dealing for K-means
Optimization. Barakbah and Helen (2005) presented a new
algorithm, called as Optimized K-means, that spreads the
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initial centroids in the feature space so that the distances
among them are as far as possible [14]. Barakbah et al.
(2005) presented the optimization of initial starting points
for K-means using Simulated Annealing [15]. Barakbah
(2006) proposed a new algorithm to optimize the initial
centroids for K-means by separately locating them as far as
possible in data distribution [16]. By considering the
computation of K-means optimization, Barakbah and Arai
presented a fast algorithm for designating the initial
centroids by embedding hierarchical algorithm into K-means
clustering [17].

In this paper we propose a new approach for optimizing
the initial centroids for K-means inspired by the designation
of pillars’ placement in a house or building. We consider the
pillars which should be located as far as possible from each
other to withstand against the pressure distribution of a roof,
as the number of centroids amongst the data distribution.
Therefore, our proposed approach determines the position of
initial centroids by calculating the accumulated distance
metric between each data and all previous centroids, and
then, a data point which has the maximum distance will be
selected. This approach is able to locate all centroids
separately as far as possible between the initial centroids in
the data distribution. This algorithm is also robust whereby it
has a mechanism to avoid outlier data being chosen as the
initial centroid. The detail description of the proposed
approach will be described in forthcoming sections.

We organize this paper as follows. In Section 2, the K-
means algorithm is described. Our proposed approach will
be discussed in Section 3. Section 4 describes the validity
measurements those are used in the experiments. Section 5
describes the experimental results using several benchmark
datasets with several comparing algorithms, and then
followed by concluding remarks in Section 6.

II. BASIC THEORY OF K-MEANS

This section briefly explains the basic theory of K-means
clustering for introducing our new approach to optimize the
initial centroids for K-means in the next section. Let 4={q; |
i=1,....f} be attributes of f~dimensional vectors and X={x; |
i=1,....N} be each data of 4. The K-means clustering
separates X into A& partitions called clusters 5={s; | i=1,....k}
where M € X is M={m; | j=1,..., n(s;)} as members of s,
where n(s;) is number of members for s;. Each cluster has
cluster center of C={c, | i=l,....,k}. K-means clustering
algorithm can be described as follows:

.Initiate its algorithm by generating random starting points

of initial centroids C.

2. Calculate the distance ¢ between X to cluster center C.
Euclidean distance is commonly used to express the
distance.

3.Separate x; for i=1..N into § in which it has minimum
d(x,.C).

4. Determine the new cluster centers ¢; for i=1..k defined as:

1 nis;)
c,.:—Zm”.e S; (1)
n ‘=
5.Go back to step 2 until all centroids are convergent.
The centroids can be said converged if their positions do not
change in the iteration. It also may stop in the ¢ iteration with
a threshold € [7] if those positions have been updated by the
distance below &:

C; _C{—I

<& (2)
C!

III. PROPOSED ALGORITHM

This section describes the basic concepts of the proposed
algorithm, how to designate the initial centroids for
optimizing K-means clustering, and an outlier detection
mechanism. This section also contains a complexity analysis
of the proposed algorithm and a sequential logical flow for
the proposed approach.

A. Basic Concept

The K-means algorithm generates the initial centroids
randomly and fails to consider a spread out placement of
them spreading within the feature space. In this case, the
initial centroids may be placed so close together that some
become inconsequential. Because of this, the initial centroids
generated by K-means may be trapped in the local optima.
We propose in this paper a method of placing the initial
centroids whereby each of them has a farthest accumulated
distance between them.

The proposed algorithm in this paper is inspired by the
thought process of determining a set of pillars’ locations in
order to make a stable house or building. Fig. | illustrates
the locating of two, three, and four pillars, in order to
withstand the pressure distributions of several different roof
structures composed of discrete points. It is inspiring that by
distributing the pillars as far as possible from each other
within the pressure distribution of a roof, the pillars can
withstand the roof’s pressure and stabilize a house or

Fig. 1. Tlustration of locating a set of pillars (white points)
withstanding against different pressure distribution of roofs.
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this way, all centroids can be located as far as possible from
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Fig. 2. Selection for several candidates of the initial centroids.

We consider the pillars which should be located as far as
possible from each other to withstand against the pressure
distribution of a roof, as number of centroids among the
gravity weight of data distribution in the wvector space.
Therefore, our proposed approach in this paper designates
positions of initial centroids in the farthest accumulated
distance between them in the data distribution.

B. Determining Initial Centroids

First of all, the grand mean of data points is calculated as
the gravity center of the data distribution. The distance
metric D (let D' be D in this early step), is then created
between each data point and the grand mean. A data point
which has the highest distance in D' will be selected as the
first candidate of the initial centroid . Fig. 2a illustrates m
as the grand mean of data points and s which is has the
farthest distance to m is the candidate of the first initial
centroid.

If 3 is not an outlier, it will be promoted to the first initial
centroid ¢;. We then recalculate D (D in this step), which is
the distance metric between each data points and ¢;. Starting
from this step, we use the accumulated distance metric DM
and assign D’ to DM. This step which initiates the creation
of DM is an improvement part of our previous work, MDC
algorithm [16], that the construction of DM is started from
n'.

To select a candidate for the second initial centroid, the
same mechanism is applied using DM instead of D. The data
point with the highest distance of DM will be selected as the
second initial centroid candidate x, as shown in Fig. 2b. If x
is not classified as an outlier, it becomes ¢,. To select a next
x for the candidate of the rest initial centroids, D' (where ¢ is
the current iteration step) is recalculated between each data
points and ¢,;. The D' is then added to the accumulated
distance metric DM (DM € DM + D). This accumulation
scheme can avoid the nearest data points to ¢, ; being chosen
as the candidate of the next initial centroid. It consequently
can spread out the next initial centroids far away from the
previous ones. The data points with the highest distance in
DM will then be selected as x, as shown in Fig. 2c.

If x is not an outlier, it will become ¢, The iterative
process guarantees that all initial centroids are designated. In

each other within the data distribution. It follows, then, that
our algorithm does not consider exhaustively search for an
initial centroid near the gravity center of its group because
that will later be handled by K-means after the end of the
initial centroid generating algorithm. Our previous work
proved [14] that the placement of an initial centroid in any
location near its group will give the same result as the final
centroid, as illustrated in Fig. 3 (the full red color point is the
initial centroid and the red circle point is the final centroid
after running K-means.

‘.'. L .... I.
| ]
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Fig. 3. An illustration for different placements of a centroid.

C. Outlier Detection Mechanism

To be selected as the initial centroids, the data point
candidate must not be categorized as outlier. We identify an
outlier by considering the number of neighbor points within
the neighborhood boundary. Let #n be the number of data
points and & be the number of clusters, we set the number of
neighbors nmin by using a probabilistic parameter & to the
average members of clusters n/k. For assuming the
neighborhood boundary nbdis, we apply a threshold 5 to the

Fig. 4. An illustration of the neighborhood boundary.
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highest distance in D', as shown in Fig. 4. In our case, we set
=0.25 and £=0.33, which means that a data point can be
classified as an outlier if it has the number of neighbors
lower than 25% of the average members of clusters within
the neighborhood boundary which is 33% of the highest
distance in D.

To get several data points to be the neighbors inside the
boundary, it needs to calculate a distance metric between all
data points and x. However, it can utilize distance metric D
for the next iteration step. In case shown in Fig. 4, the
distance metric between all data points and s can be
acquired from D’. If the number of neighbors inside the
boundary is lower than nmin, % will be classified as an
outlier. When :x is considered as an outlier, it will be
redetermined by selecting the second highest distance in D’
This outlier detection mechanism is iteratively executed until
# can be considered as the initial centroid.

D.Algorithm Complexity

The time complexity of the algorithm proposed in this
paper, is O((k+h+1) n), where k is number of clusters, n is
number of data points, and / is number of outliers in the data
set. This time complexity is little bit longer comparing to our
previous work MDC algorithm which has O((4+1) n), since
we involve an outlier mechanism whereas this mechanism
was not covered by MDC. In a case of where there is no
outliers in the data set, the time complexity can reach
O((k+1) n), or equal to O((r+1) n), where ¢ is the number of
iterations, since selecting an initial centroid for each 4 takes
one iteration. For worse case where there are number of
outliers close to n (h=n), the time complexity becomes
=0(n’). However, the outliers usually do not quantitatively
dominate in a data set. For space complexity, this algorithm
has O(2n), since it uses DM for storing the accumulated
distance metric and D for storing the distance metric for
each iteration, where DM={dm; | i=1,....n} and D={d; |

).

E. Execution steps

Let X={x, | i=l,...,n} be data, & be number of clusters,
C={¢; | i=1,..., k} be initial centroids, SX < X be
identification for X which are already selected in the
sequence of process, DM={x; | i=1,....n} be accumulated
distance metric, D={x, | i=1,...,n} be distance metric for
each iteration, and m be the grand mean of X. The following

execution steps of the proposed algorithm are described as:
1. Set C=U, $X=0, and DM=]

2. Calculate D € dis(X,m)

3. Set number of neighbors nmin= . n/k

4. Assign dmax € argmax(D)

5. Set neighborhood boundary nbdis = f . dmax

6. Seti=1 as counter to determine the i-th initial centroid

7. DM=DM+D

8. Select x € Xuremaxoan 88 the candidate for i-th initial
centroids

9. SX=SXux
10. Set D as the distance metric between X to x.

11. Set no€number of data points fulfilling D < nbdis

12. Assign DM(x)=0

13. If no < nmin, go to step 8

14. Assign D(5X)=0

15. C=Cux

l6. i=i+1

17. Ifi <k, go back to step 7

18. Finish in which C is the solution as optimized initial
centroids

IV. VALIDITY MEASUREMENTS

For performance analysis, we use several validity
measures for clustering results; those are variance within
cluster, variance between clusters, sum of squared error,
standard deviation validity index, centroid proximity index,
and execution time.

A. Variance Analysis

Variance constraint [9] can express the density of the
clusters with the variance within cluster and the variance
between clusters [6, 13]. The ideal cluster has minimum
variance within cluster to express internal homogeneity and
maximum variance between clusters to express external
homogeneity [12]. Let X={x, | i=1,...,N} be data set, S={s, |
i=1,....,k} be clustered X where M € X is M={m; |

i(sy)t as members of s;, variance within cluster can be
defined as follows:

k

Z n(s,)— (3)

where N is number of data points, & is number of clusters,
and »; is number of members in i-th cluster, while v; is given
as:

) 1
v =——— 3| m, -5 )
n(s,)—1 ; .

where m; is members of i-th clusters.

Variance between clusters then can be defined as follows:
I3

712 n(s)(5, — ) (3)
i=1

B. Sum of Squared Error

The most widely used criterion to quantify cluster
homogeneity is the sum of squared error criterion [9]. It can
be defined as:
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Eonis,)

2
2 2 |m, -5

i=l j=1

SSE = (6)

C. Standard Deviation Validity fndex

The standard deviation validity index is defined based on
the concepts of the average scattering for clusters and total
separation between clusters [8]. It consists of average
scattering for clusters and total separation between clusters.
The average scattering for clusters is defined as:

oL low)
scat(k)= p Z;’ oG] (7

The definition of total scattering (separation) between
clusters is given as follows:

-1

s, — 5, H (8)

asw=Lo 3§

min =1\ j=L =i

where D,

s

= max(]|s;-s;|[) is the maximum distance between
centroids, and D,,;, = min(]|s;-s;[|) is the minimum distance
between centroids. The standard deviation validity index for
k clusters can be defined as:

SDVI(k) = a . scat(k) + dis(k) (9)

) where ¢, 18

nax

where ¢ is a weighting factor equal to dis(c
the maximum number of input clusters.

max

D. Centroid Proximity Index

We propose this kind of validity measurement, called
centroid proximity index, to analyze the closeness of the
final centroids of the clustering result to the centroids of the
real data sets. It can be defined as:

K
CPI=min " (|e; — 1) (10)
i=1

where ¢; is i-th final centroid of clustering result and #; is i-th
real centroid of data sel.

V.EXPERIMENTAL RESULTS

To establish practical applicability of our proposed
algorithm, we made a series of experiments and tested its
performance on several benchmark datasets, mostly from
UCI repository; those are Ruspini], Fossil [1], Iris, New
Thyroid, Wine, Glass, Heart, and lonosphere [18] datasets.
For comparison purpose, we use the plain data of each data
set without applying the normalization.

" built-in data object in both R and S-plus statistics packages.

We conducted the performance comparison between the
proposed algorithm and several approaches of initial
centroids optimization for K-means; those are Forgy
approach, Mac Queen approach, Kaufman approach,
Refinement approach [3], MDC [16] and K-means using
random initialization. For Forgy, Mac Queen and
Refinement approach, because those approaches cannot give
the unique clustering results, we made 10 times experiments
and noticed their average results. We set @=0.25 and #=0.33
for our proposed algorithm to detect the outliers. In addition
we also conducted the comparison between our proposed
algorithm in this paper and several clustering algorithms
those are hierarchical clustering (Single, Linkage, Linkage,
and Average Linkage), and possibilistic clustering (Fuzzy C-
Means). We run all programs under Matlab 6.5, with
computer specifications: Intel Core2, 789 MHz, 2 GB RAM.
We use built-in Matlab toolbox for Hierarchical algorithms.
For Fuzzy C-Means, we used a program developed by David
Corney (2000). Aside from that, we developed our own
programs for the rest of algorithms.

Table 1-Table 8 shows the comparison results of validity
measurements for each data set. Those tables perform that
our proposed algorithm can optimize the designation of the
initial centroids and then improve the precision of K-means

clustering in all data sets and in most of validity
measurements.  Moreover, our proposed algorithm
outperformed relatively in at least two validity

measurements comparing to the other algorithms, and at
least three validity measurements comparing to the other
initial centroid optimization algorithms. However, the
proposed algorithm got less performance in Glass and Heart
data set. It was caused by inappropriately setting up the
parameters of the proposed algorithm for outlier detection. 1f
the parameters are adjusted too strictly, many data points
will be considered as outlier, and it probably leads to discard
the appropriate initial centroids. On the contrary, when the
parameters are given broadly, the outliers can be selected as
the initial centroids. In case of Glass data set, if we set more
strictly f=0.1, the performance improves v, and SSE
respectively to 1.64 and 1.6, and outperforms the other
algorithms. The opposite case related to Heart data set, if §
is defined broader to 0.5, the performance becomes better for
v,=2047.25 and SS5E=2024.5 which reaches same
performance to MDC and outperforms to the rest of
algorithms. For purpose of empirical study in this paper, we
only simplified the parameter set-up and defined the same
values in all data sets. However, the better way to set up
these parameters for outlier detection is adjusted to
characteristic of data distribution in the data set.
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TABLE]
VALIDITY MEASUREMENT IN RUSPINI DATA SET

Algorithm v, vy SSE SDVI CPI
K-means with random init. 284.50 T8788.05 269.32 0.52 23.69
K-means with Forgy init. 388.01 TT183.15 367.31 0.71 51.20
K-means with Mac Queen init. 436.15 77704.16 412.89 0.70 59.00
K-means with Kaufiman init. 181.42 78190.89 171.75 0.29 0.00
K-means with Refinement init. 33312 T6886.69 31535 046 34.28
K-means with MDC init. 181.42 T78190.89 171.75 0.29 0.00
Single Linkage 181.42 T78190.89 171.75 0.29 0.00
Complete Linkage 229.01 7657248 216.79 0.32 9.47
Centroid Linkage 181.42 T78190.89 171.75 0.29 0.00
Average Linkage 181.42 T78190.89 171.75 0.29 0.00
Fuzzy C-Means 181.42 T8190.89 171.75 0.29 0.00
K-means with our Pillar algorithm 181.42 T8190.89 171.75 0.29 0.00

TABLEII

VaLiDiTYy MEASUREMENT IN FossiL Data SET

Algorithm Vu Vi SSE SDVI CPI
K-means with random init. 42.92 6696.84 41.44 1.01 16.65
K-means with Forgy init. 41.45 6178.04 40.02 097 10.01
K-means with Mac Queen init. 4341 6829.82 41.91 1.05 19.13
K-means with Kaufiman init. 40.61 6011.59 39.21 0.89 9.52
K-means with Refinement mit. 41.69 6212.71 40.25 0.97 9.12
K-means with MDC init. 45.46 7572.06 43.88 1.11 31.78
Single Linkage 50.28 7206.18 48.54 0.69 13.17
Complete Linkage 43.27 5894.69 41.78 1.25 5.54
Centroid Linkage 47.33 6713.86 45.70 0.78 9.27
Average Linkage 45.53 6498 .85 43.96 0.85 6.68
Fuzzy C-Means 45.46 7572.06 43.89 1.11 31.50
K-means with our Pillar algorithm 40.58 6009.08 39.18 091 9.07

TABLE 111

VaALIDITY MEASUREMENT IN IR1S DATA SET

Algorithm v, vy SSE SDVI CPI
K-means with random init. 0.59 181.47 0.58 4.81 3.83
K-means with Forgy init. 0.76 341.69 0.74 11.24 2.30
K-means with Mac Queen init. 0.62 31832 0.61 7.80 1.25
K-means with Kaufiman init. 0.54 302.23 0.53 5.85 0.51
K-means with Refinement mit. 0.58 309.61 0.57 6.64 0.86
K-means with MDC init. 0.54 302.49 0.53 5.84 0.52
Single Linkage 0.97 317.98 0.95 434 2.54
Complete Linkage 0.61 300.84 0.60 5.22 0.86
Centroid Linkage 0.54 302.79 0.53 5.83 0.56
Average Linkage 0.54 302.79 0.53 5.83 0.56
Fuzzy C-Means 0.98 38221 0.96 15.65 4.19
K-means with our Pillar algorithm 0.54 302.23 0.53 5.85 0.51

TABLE IV

VaLiDiTy MEASUREMENT IN NEW THYROID DaTa SET

Algorithm v, vy SSE SDVI CPI
K-means with random init. 136.40 19868.35 134.49 043 16.50
K-means with Forgy init. 136.85 2212448 134.94 0.46 20.00
K-means with Mac Queen init. 136.41 20836.21 134,51 0.45 17.38
K-means with Kaufman init. 136.70 18581.93 134.80 0.44 16.62
K-means with Refinement mit. 137.19 26366.74 135.28 0.48 26.30
K-means with MDC init. 137.73 27970.57 135.81 048 29.71
Single Linkage 278.14 11904195 274.26 0.81 95.97
Complete Linkage 166.84 42480.35 164.51 0.40 54.85
Centroid Linkage 222.60 T8800.70 21949 0.17 87.38
Average Linkage 21355 40171.26 210.57 027 61.19
Fuzzy C-Means 136.24 18621.09 134.34 043 13.73
K-means with our Pillar algorithm 136.21 18629.12 134.31 042 13.90
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TABLEV
VaLIDITY MEASUREMENT IN WINE DaTa SET
Algorithm Vi Vi SSE SDVT CPI
K-means with random init. 14898.68 9702596.49 14647.58 0.03 44930
K-means with Forgy init. 13847.22 8228689.09 13613.84 0.04 286.00
K-means with Mac Queen init. 14450.95 8933587.32 14207.40 0.03 365.34
K-means with Kaufman init. 13546.80 7807572.69 1331848 0.04 23935
K-means with Refinement init. 14597.18 9220246.43 14351.16 0.03 396.97
K-means with MDC init. 15048.89 9913154.68 14795.25 0.03 472.63
Single Linkage 78592.92 29148962.94 77268.32 0.10 1634.98
Complete Linkage 14062.37 8119822.76 13825.36 0.03 279.94
Centroid Linkage 22298.57 17017412.83 21922.75 0.03 989.86
Average Linkage 22298.57 17017412.83 21922.75 0.03 989.86
Fuzzy C-Means 13579.61 7829807.43 13350.74 0.04 248.09
K-means with our Pillar algorithm 13546.80 7807572.69 13318.48 0.04 239.35
TABLE VI
VaLimy MEASUREMENT IN GLass DATA SET
Algorithm Vi Vi SSE SDVi CPI
K-means with random init. 1.74 279.49 1.69 54.97 14.14
K-means with Forgy init. 2.11 243.28 2.05 66.83 11.62
K-means with Mac Queen init. 1.80 25557 1.75 67.99 12.93
K-means with Kaufman init. 1.86 283.68 1.81 47.50 13.54
K-means with Refinement init. 2.06 434.16 2.00 298.05 20.74
K-means with MDC init. 2.07 529.32 2.01 18.77 21.49
Single Linkage 5.18 407.03 5.03 16.79 31.59
Complete Linkage 1.96 356.65 1.90 23.74 18.28
Centroid Linkage 442 409.72 4.29 16.79 29.86
Average Linkage 4.25 313.30 4.13 16.37 26.28
Fuzzy C-Means 2.05 318.98 1.99 40.87 12.45
K-means with our Pillar algorithm 2.06 303.50 2.00 34.16 12.19
TABLE VII
VaLipmry MEASUREMENT IN HEART DaTa SET
Algorithm Vi Vi SSE SDVi CPI
K-means with random init. 267032 2481847.84 2640.65 0.01 230.75
K-means with Forgy init. 2116.84 497918.34 209332 0.02 85.95
K-means with Mac Queen init. 204733 250516.93 2024.59 0.02 67.89
K-means with Kaufman init. 2049.01 246558.31 2026.25 0.02 67.60
K-means with Refinement init. 2462.52 1738477.00 2435.16 0.02 176.49
K-means with MDC init. 204725 251126.45 2024.50 0.02 67.93
Single Linkage 284436 4584128.45 2812.75 0.01 322.74
Complete Linkage 259241 769208.35 2563.61 0.02 129.84
Centroid Linkage 273935 2730213.34 2708.92 0.01 248.88
Average Linkage 273935 2730213.34 2708.92 0.01 248.88
Fuzzy C-Means 2047.69 249139.02 2024.94 0.02 67.80
K-means with our Pillar algorithm 2049.01 246558.31 2026.25 0.02 67.60
TABLE VIII
VALIDITY MEASUREMENT IN IoNOSPHERE DaTA SET
Algorithm Vi Vi SSE SDVI CPI
K-means with random init. 6.93 829.40 6.89 0.49 239
K-means with Forgy init. 693 829.00 6.89 0.49 2.38
K-means with Mac Queen init. 8.06 1828.71 8.01 042 4.09
K-means with Kaufinan init. 693 828.60 6.89 0.49 238
K-means with Refinement init. 6.93 829.40 6.89 0.49 2.39
K-means with MDC init. 6.93 §29.40 6.89 0.49 239
Single Linkage 9.19 3205.77 9.14 0.33 6.26
Complete Linkage 8.83 351.26 8.78 0.66 1.68
Centroid Linkage 9.19 3205.77 9.14 0.33 6.26
Average Linkage 9.19 3205.77 9.14 0.33 6.26
Fuzzy C-Means 6.93 830.08 6.89 0.49 2.39
K-means with our Pillar algorithm 6.93 §28.60 6.89 0.49 2.38
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TABLE IX
CoMPARISON OF EXECUTION TIMES (IN SECOND) FOR INITIAL CENTROIDS OPTIMIZATION ALGORITHMS OF K-MEANS FOR EACH DATA SET
. L . . New . . i 3

Algorithm Ruspini Fossil Iris Thyroid Wine Glass Heart Ionosphere

K-means with random init. 0.01 0.01 0.00 0.02 0.01 0.04 0.00 0.00

K-means with Forgy init. 0.13 0.13 0.20 0.28 024 0.55 0.16 0.32

K-means with Mac Queen init. 0.14 0.12 0.21 029 0.25 0.56 0.18 036

K-means with Kaufman init. 21.05 16.31 49.05 101.19 69.72 384.34 29.20 115.70

K-means with Refinement init. 3.98 346 12.84 50.96 41.22 66.79 12.50 69.23

K-means with MDC init. 0.19 0.16 0.23 0.31 027 0.59 0.19 0.34

K-means with our Pillar algorithm 0.19 0.36 0.55 2.33 042 2.08 042 27.05
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