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Abstract

Reinforcement Learning (RL) is a machine learning
technique that solves problem by using exploration and
exploitation method based on specific goals that has
been initiated. This paper present a new approach that
allows the Reinforcement Learning (RL) solves case
base optimization, by using the RL behavior in
considering exploitation and exploration. This new
approach, called Reinforcement Programming (RP),
builds by modifying RL, in which RL methods are
modified by adding variable alpha, beta as new formula
for learning method. Alpha and beta is subset of RP in
finding solution of case base optimization and with
specific value of alpha and beta it will impact the
accuracy of solution. In this paper we implement and
give a testing to our proposed algorithm for optimizing
K-means centroid optimization. The Result of our
proposed idea has been compared into several
optimization algorithm. The experimental results show
the improved solution of case based function using
proposed approach.

Keywords: Reinforcement Learning, Reinforcement,
Optimization, Algorithm.

1. Introduction

The recent learning theory that has been developed
by many scientific is theory of learning based on
supervised learning. Supervised learning is the machine
learning task of inferring a function from labeled training
data. A supervised learning algorithm analyzes the
training data and produces an inferred function, which
can be used for mapping new examples. Thus, did not
create a true-learning machine which can improve the
ability of agent to solve problems that given to it, but
create a learned machine, a smart machine after had
some training method.

Reinforcement Learning is a new paradigm in
learning theory, which applied into a machine or a

computer system to make a smart machine or computer.
Inspired by human  behaviorist  psychology,
reinforcement learning concerned with how software
agents ought to take actions in an environment and
collect as many reward as possible to reach its goal [1].
The agent decides the action that will be taken by
considering exploitation and exploration. Exploitation is
a process to get as many information as possible from its
owned library or experienced. Exploration is a process
for collecting new information from its environment by
exploring a state that has been de-fined in environment
[2].

Reinforcement learning combines supervised and
unsupervised learning theory that makes Reinforcement
Learning interesting to learn because of its behavior for
become more intelligent after learning from its
environment. Reinforcement Learning improves its
ability after collecting reward for each step for solving a
problem. Thus, make Reinforcement Learning as true-
machine learning which can be smarter after learning by
itself.

The case based optimization literature is also vast
[3]. This case problem and its variants are used in many
resource management applications such as cargo loading,
industrial production, menu planning, and resource
allocation in multimedia servers. In this paper we will
specify case in this paper and discussing finding prince
as problem testing. The finding cases prince is a variant
of heuristic problem. Here we have to find prince
position by using distance formula between agent and
the prince as fitness value. In iteration process the agent
will take and action to shortening distance to princess. A
good solution is decided with the final distances between
agent and prince.

Until recently, exact methods for the solving case
based optimization were dominated by methods by
generate solution though random number value in
several state such as Genetics algorithm and ant Colony.
The random number will cause different solution in
different experiment.
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Reinforcement Learning helps in improving the
performance of agent to solve a case. Reinforcement
Learning is a relatively new approach to problem solving
that takes inspiration from the behavior of human brain.
In particular, human brain will learn by exploit a new
condition and save the result as reward [4]. So human
brain will also have an experience based on exploitation.
Therefore (RL) is also a very successful Artificial
Intelligence subarea. RL algorithms are very useful for
solving a wide variety problems when their models are
not available a priori, since many of them are known to
have guarantees of convergence to equilibrium.
However, the convergences of a RL algorithm may only
be achieved in solve case based goal not case based
function. Therefore in this paper we proposed new
algorithm to implement Reinforcement Learning cycle in
case based function.

2. Basic Theory of Reinforcement Learning

Reinforcement learning is a way of getting an agent
to learn [5]. The agent learns by receiving rewards after
every action. It somehow keeps track of these rewards,
and then selects actions that it believes will maximize the
reward it gains, not necessarily only for the next action,
but in the long run. The agent usually goes through the
same environment many times in order to learn how to
find the optimal actions. Balancing exploration and
exploitation is particularly. Because the agent may have
found a good goal on one path, but there may be an even
better one on another path [6]. Without exploration, the
agent will always return to first goal, and the better goal
will not be found. Or, the goal may lie behind very low
reward areas, which the agent would avoid without
exploration. On the other hand, if the agent explores too
much, it cannot stick to a path; in fact, it is not really
learning: it cannot exploit its knowledge, and so acts as
though it knows nothing. Thus, it is important to find a
good balance between the two, to ensure that the agent is
really learning to take the optimal actions [7].
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Figure 1. The basic reinforcement learning scenario.
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The basic scenario of Reinforcement Learning has
objective to get as much reward as possible [8]. Reward
or punishment will declare in RL system. Which every
optimization case has different rule to decide the rewards
and penalties for action of Reinforcement Learning
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agent. The output is an action that will take by agent to
solve problem by considers the whole problem of a goal-
directed.

Reinforcement learning by interacting with an
uncertain environment and decide what to do-how to
map situations to actions-so as to maximize a numerical
reward signal. The learner is not told which actions to
take, as in most forms of machine learning, but instead
must discover which actions yield the most reward by
trying them.The policy is some function that tells the
agent which actions should be chosen, and it is learned
through trial-and-error interactions of the agent with its
environment [9].

3. Our Proposed Reinforcement Programming

Reinforcement Programming (RP) algorithm is the
algorithm using basic concept of reinforcement learning.
So in its implement, Reinforcement programming has
the same behavior of Reinforcement Learning, by
involving a balance between exploration of uncharted
territory and exploitation of current knowledge to find
solution. The solution determined by as much reward as
possible in process learning. Reward and punishment are
a value given by environment from the agent step.

In RP, this policy is learned through trial-and-error
interactions of the agent with its environment: on each
interaction step the agent senses the current states of the
environment, chooses an action to perform, executes this
action, altering the states of the environment, and
receives a scalar reinforcement signal r (a reward or
penalty).

The benefits of Reinforcement Programming are to
bring a benefit in optimization case using an intelligent
learning approach based on Reinforcement Learning.
With involving the characteristics of Reinforcement
Learning, Reinforcement Programming provides an
experience-based learning to achieve the global
optimum.

3.1. Variable Reinforcement Programming

Reinforcement Programming is mainly based on the
Reinforcement Learning. A number of slight
modifications of Reinforcement Programming can be
formulated where:

- P :is a variable value to give impact to step that
the agent will take.

- p:a variable that will set a step value to the last
step.

The goal of the agent in a RP problem is to learn an
optimal solution by set action€d, . step, that action is
accumulated from previous step with direction of step
that will be taken. The current States will be assign in
variable newS€ New states will be accumulated by
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cuttent new states and action newS,€newS, + action
(newS, must be in [minval,. .maxval,]). And assign
variable step with rule :

newS, €8, + action ()

The RL technique is well-known uses a strategy to learn
an optimal via learning of the action values. It iteratively
approximates new States. In RP the condition of using
exploitation or exploration are decided by random

step, € step, - it . r, .step, (2)

p are probability to take action whether to exploit or
explore a finite state. To balance exploitation and
exploration p can be set in 0.5. Variable on reinforcement
Programming structure is given in figure 2.

ste |8, |8 |8 | |8, |
Reward | I, ‘ T, | Iy | I r, |
Ditection | d, | d, | d, | | d, |
Step|a]|u2|aj|...|an|
minval |min. |min: m.in$| |min,||
maxval |max‘ max, | max; | .., |max,

Figure 2.The basic variable reinforcement programming.

The main RP variable that has an important condition
to solve optimization problem can be explain below:

- State: is a finite set of states.

- Reward: a wvariable to save reward and
punishment.

- Direction: is a direction that will take agent to the
optimum solution.

- MinVal, MaxVal : is a finite area of cases that the
agent can perform.

- Action Value (av) : variable that save the value of
agent action.

State is the first position of agent to start solving
problem. State can be initiate as assigned value or
random number, depends of cases that will handled by
agent. Variable reward is an array to save reward of each
state that has been declared. To change the action
direction of agent we need to declare direction variable.
In first position direction can be assign with positive
number to increase the direction in positive grid line.
Action value is an array to save the calculation of action
that has been taken by agent.
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Variable above are formulating to have compatible
with optimization cases. Modification of different
heuristic case will change the condition of variable state
and direction.

3.2. System Architecture

System architecture given in figure 3, explain the flow
of Reinforcement Programming while find the best
solution from optimization problem. The basic
Reinforcement Programming algorithm starts with an
initialization phase, where

i Assign data item and set into variable dataset

ii. Set modeling state value calculation(depend on
optimization cases)

iii.  Set probability for exploration rate. Use 0.5 to
get a balanced action for exploration and
exploitation.

iv.  Assign the value of new state in state.

V. The agents process state evaluation to whether
receive reward or punishment for current action.

This is done using an index that stores the positions of
all “free” data items on the grid. The process is as follows:

Oprtimization
Problem
v StareVal
State Modeling &
Value Calculation
s ; ,
State Exploration
. ;
State Update
J : y
State Value
Calculation
: ;

State Evaluation

State Evaluation

Reward

Direction

Figure 3. Step of reinforcement programming.

First step, RP processing case based function by
modeling state and state value calculation. Then agent
will begin state exploration in finite environment of
problem, the actions that can be taken by agent is
determined by exploration rate. If a random number is
bigger than exploration rate than the agent will choose
solution randomly in finite area. But if the random
numbers are smaller than exploration rate than agent will
consider taking an action based on reward. After take an
action agent updates the current state and calculates
current state value. A value from current state will label
as reward or punishment, and determining the next
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direction of exploration. If agent receives punishment,
then the agent will change its direction for the next
exploration step. This process will be iterates in some
value that already assign as number of learning time for
agent of RP.

An extension of this algorithm is algorithm is
presented where the parameter is an adaptively updated
during the execution of the algorithm. This algorithm is
given in Figure 3.

(1) | Procedure Reinforcement Programming

(2) Initialize datsset onthe toroid grid

31 Randemly place agent en toroid grid

[4) For | = 1 to max_iteration

51 Calculate sv

B} R = random explaration number

(7} i (r = exploration_rate)

81 Letagent randomly explore environment

(91 Else

{10] Letsgent use its knowledge to determine the next
action by the biggest reward value

{11) End If

(12) Execute action

{13) Calculate new state value

(14) Calculate new step position [/ see equitation (2)

(15) Hi{newsv = sv)

(16) Update array S

(17) Increase and Update reward value // see
equitation (3]

(18] Else if (newsw < sv )

(19) Set punishment and update reward value J/see
equitation (4)

{20) Change direction

(21) Else

(22) Letagent change direction to explore environme nt

(23) End If

(24) End for

{22]) | End Procedure

Figure 3. Reinforcement programming algorithm.

Reinforcement Learning needs to initialize dataset to
identify problem environment. Agent will place randomly
or assigned value depends on handled cases. After
calculate state value, agent will determine action between
exploration and exploitation. Then execute action and
calculating new state value to determine reward based on
state current wvalue. Reward of new state in the
environment is computed through the following Equation
(3)and (4)

1y €r,t B (1) (3)

The equation above show the formula for increasing
reward value.

r€r,-f.(1-1) 4)

And in case to give punishment, Reinforcement
Programming used formula above to decrease reward
value. Where f is a constant to set a value of reward with
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scalar 0.1 until 1. The more scalar that will be used it will
impact the increase or decrease value of reward.

The output of Reinforcement Programming algorithm
is a solution of given problem.

4. Experiments in the Optimization Cases

Reinforcement Programming experiment has been
tried on Finding Princes as initial optimization case.
Finding Princes are most simple optimization techniques.
Starting from a random position of agent, the algorithm
repeatedly computes the distance to reach a better and
closest point to prince or goal position.

1000 1o

i

@

P

() '
()

00

a0

4an

0

1009

anl B tavset
[
==== Step

&0l
500

100 200 300 490 500 400 700 0D 4001000

Figure 4. Finding prince basic algorithm.

The algorithm for the simple Finding Princes is given
as follows:

1. Set position of princes

2. Assign random position of agent.

3. When all objects have been assigned, recalculate
the positions of the agent to princes” position.

4. Go back to Steps 2 until iteration limit

The initial agent is normally set in randomly position
as Finding Princes standard algorithm. Agent will
continuously search the closest position with closest
distances to prince’s position. We implement our
proposed idea to solve Finding Princes algorithm. With
the first condition in experiment is agent being
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positioning in random finite area, then in N iteration
agent need to take action to get as close as possible to
prince position. Agent will move into a new state to solve
Finding Prince problem, the current position of agent will
calculated with distance formula to get the fitness value
of current agent.

When this assignment process is over, a new position
will be calculated for distances with prince’s position.
The closest current agent position in experiment result
will be noted and analyzed in table of experiment.

This paper shows about Reinforcement Programming
compare with Genetic Algorithm[10].

4.1. Data Plot Example
The data plot of Finding Prince are given with
variable bellow
Table 1. Variable of finding prince.

Prince Position ] Finite Area ]
X Y X Y

50 50 1000 1000

The  experiments are performed over a
mathematically generated 2D data plot. Figure 4 shows
the data plot distribution. Dataset 1 is made based on a
mathematical model to form princes position in finite area

100
a0
B0
7o
60
50 .

40

3n .

010 20 30 40 50 &0 7O =0 90 100
Figure 4. Finding prince data.

Data plot Finding prince consist one point scattered
around finite area. This data plot will be used as an
evaluation value of current state of agent, which has a
function to find the shortest distance with prince
position. The data plots above are to be tested using
Reinforcement Programming and Genetic Algorithm.
The average error and average time taken by the Finding
Prince with GA approach is quite high. Finally, running
Reinforcement Programming to solve Finding Prince
definitely guides to the best solution among the group,
this appears clearly from the results obtained. The
following Figure 6 and 7 will show the last position from
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running algorithm. Each algorithm use number 100, 200,
500, and 1000 as max iteration.

The experiment using 100, 200, 500 and 1000 times
of iteration, in each algorithm runs in 5 times of
experiment. The accuracy of current state will count by
the distance with prince position and two variables: Error
ratio and time consuming. In experiment noted the
number of valuing and time consuming for each
algorithm.

GA algorithm used 10 individual in one population
and the operator of cross over and mutations are direct
switch.

Table 2. Genetics Algorithm Result

iteration | Final X Final Y Error Rate | t
100 | 60.9967406 | 65.7679974 | 26.76474 21
100 | 41.5547915 | 74.3364451 | 32.78165 19
100 | 23.9424198 | 79.9420789 | 55.99966 20
100 | 55.0478627 | 28.0488782 | 26.99898 18
100 | 44.9324645 | 57.5445519 | 12.61209 19
Sum 226.474279 | 305.639951 | 155.1571 97
Average 45.2948558 | 61.1279903 | 31.03142 | 19.4
200 | 50.3555437 | 77.6294531 27.985 35
200 | 38.0749452 | 48.3612969 | 13.56376 37
200 | 35.1263177 | 49.9391183 | 14.93456 36
200 59.633487 | 36.5777629 | 23.05572 36
200 | 43.3017596 | 55.8329198 | 12.53116 36
Sum 226.492053 | 268.340551 92.0702 | 180
Average 45.2984107 | 53.6681102 | 18.41404 36
500 | 54.6021979 | 38.8958947 15.7063 74
500 40.085668 | 40.085668 | 19.82866 74
500 | 30.4706487 | 61.6649164 | 31.19427 68
500 | 55.8238653 | 48.1592435 | 7.664622 71
500 | 54.6117249 | 40.0515771 | 14.56015 62
Sum 235.594105 228.8573 88.954 | 349
Average 47.1188209 45.77146 17.7908 | 69.8
1000 | 53.1414055 | 74.9771694 | 28.11857 97
1000 | 51.9714817 66.69961 | 18.67109 98
1000 | 61.2387989 | 55.2687491 | 16.50755 98
1000 | 59.9354446 | 49.6764192 | 10.25903 99
1000 | 56.5181311 | 56.7387422 | 13.25687 97
Sum 282.805262 | 303.36069 | 86.81311 | 489
Average | 56.5610524 | 60.672138 | 17.36262 | 97.8
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As for Reinforcement Learning the value of variable 35
that used in experiments are: miu: 0.1, beta: 0.01, N
exploration_rate = 0.3; 30 \
25
Table 3. Reinforcement Programming Result \
20 = Reinforcement
\_'—————-__ Programming
iteration | Final X Final Y Error Rate t ® T Genetic Alorim
10
100 | 49.1061963 | 50.6793765 | 1.573180225 2 5
100 | 47.0370931 | 56.5863569 | 9.549263728 2 o \
100 | 48.6825575 | 50.3564682 | 1.673910722 2 100 200 500 1000
100 | 43.4562944 | 48.9193939 | 7.624311662 2
100 | 51.9963295 | 51.9963295 | 3.992659035 | 2 Figure 5. Finding Prince Data
Sum 240.278471 | 258.537925 | 24.41332537 10 As we can see from graph above shown that
Average | 48.0556942 | 51.707585 | 4.882665074 2 Reinforcement Learning faster in find solution and the
200 | 497146325 | 45.6156134 | 4669754109 4 Fll]ll?lbe.l' ofllera‘llon also impact the number of accuracy
in finding solution.
200 | 50.1958153 | 48.6605951 | 1.535220279 4
200 | 48.6825575 | 50.3564682 | 1.673910722 | 4 5. Contribution and Conclusion
Reinforcement Learning is powerful algorithm
200 | 50.3254017 | 45.5039659 | 4.821435832 4 _— L . .
inspired by human brain in solving problem by using
200 | 51.7855587 | 49.6374001 | 2.148158674 4 exploration and exploitation. In other hand Reinforcement
sum 250.703966 | 239.774043 | 14.84347961 20 Learning only can implement on case based goal.
To use RL benefit to solve case based optimization,
Average | 50.1407931 | 47.9548085 | 2.969695923 4 this paper proposed Reinforcement Programming as new
500 | 50.1205468 | 49.0707099 | 1.049836886 7 algorithm. The intention of using RP is its capability of
500 | 49.9806405 | 50.0868376 | 0.106197084 7 convergence and it follows the behavior of RL. The
experimental evaluation scheme was used to provide a
S00 | 50.0392062 | 50.0409866 | 0.080192867 ’ common base of performance assessment and comparison
500 | 50.0956309 | 50.1240767 | 0.219707624 7 with other methods. Finally, when comparing the
500 | 50.0694342 | 50.0112215 | 0.080655739 7 experimental results of Finding Prince optimization
initiate centroid by using Genetic Algorithm and
Sum 250.305459 | 249.333832 1.5365902 35 Reinforcement Programming it is observed clearly that
Average | 50.0610917 | 49.8667665 | 0.30731804 7 optimizing ~ Finding  Princes  with  Reinforcement
1000 | 50.0246154 | 50.8772517 | 0.901867081 17 Programming is better than the simple genetic algorithm.
As shown by the results on all data plot finding prince
1000 | 50.0877358 | 49.9223708 | 0.165365021 18 with Reinforcement Learning is ready to achieve high
1000 | 50.0706273 | 50.119774 | 0.190401326 18 clustering accuracy if compared to other algorithms. Time
1000 | 50.0342252 | 50.0362856 | 0.070510831 19 consuming in each trial also varies depends on alpha
value, which used for exploration rate.
1000 | 50.1545055 | 50.0151317 | 0.169637255 17 Although function cased program can be solved by
Sum 250.371709 | 250.970814 1.497781513 89 several function based algori[hm such as Genetic
Algorithm. The precision value are can be different in
Average | 50.0743418 | 50.1941628 | 0.299556303 | 17.8

each evolutionary. So the use of Reinforcement
Programming can produce a stable solution, and high
precision. This lead people to get an optimum solution of

Table 2 shows the performance of K using Genetics Function-based cases

algorithm, and shows average error are quite high.From
table 3 shows it is clear that the proposed approach
shows very less error rate compared to other methods.
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