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Abstract— The ability of K-means to cluster a kind of huge
data very quickly often pays to the incorrect clustering results
because of its designated initial centroids as cluster centers
which are generated randomly. However, the efforts to
improve the precision of K-means clustering results may take
a highly execution time by optimizing the determination of
initial centroids for K-means. This paper presents a fast
algorithm for K-means optimization by improving our Pillar
algorithm. The Pillar algorithm [19] is inspired by the thought
process of determining a set of pillars’ locations in order to
make a stable house or building. The algorithm considers the
pillars’ placement which should be located as far as possible
from each other to withstand against the pressure distribution
of a roof, as identical to the number of centroids amongst the
data distribution. Hence, the Pillar algorithm designates
positions of initial centroids by using the farthest accumulated
distance between them. This algorithm is very effective to
position the initial centroids for K-means and improve the
precision of the clustering results. However, the algorithm
takes highly computational time for clustering huge data
which often have many outliers, since its complexity
O((k+h+1) n) (where k=number of clusters, ~=number of
outliers, and n=number of data items) to position the initial
centroids. In this paper, we reduce the complexity of our
previous work Pillar algorithm by excluding the designated
initial centroids’ neighbors from next iterations so that the
complexity will decrease in line with iterations and speed up
the execution time. The performance of our improved Pillar
algorithm is examined in the precision rate and computational
time with several benchmark datasets as well as image data
and compared the existing algorithms. The experimental
results show the improved solution using the proposed
approach.

I. INTRODUCTION

CLUSTERING is a widely used knowledge discovery
technique to classify unsupervised objects in the same
groups by considering their similarities. A good cluster is
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constructed when the members of the cluster have a high
degree of similarity of each other (internal homogeneity)
and are not like members of other clusters (external
homogeneity) [4, 9]. It means that the process to define a
mapping f:D>C from some data D={d;,d,,..,d,} to some
clusters C={c;,c»,..,c,} on similarity between d; [19]. The
applications of clustering are diversely in many fields such
as data mining, pattern recognition, image classification,
biological sciences, marketing, city-planning, document
retrievals, etc.

The most well known, widely used and fast methods for
clustering is K-means algorithm developed by Mac Queen
in 1967. The simplicity of K-means made this algorithm
used in various fields. K-means algorithm is a partitioning
clustering method that separates data into & mutually
excessive groups. Through such the iterative partitioning,
K-means clustering minimizes the sum of distance from
each data to its clusters. K-means clustering is very popular
because of its ability to cluster a kind of huge data, and also
outliers, quickly and efficiently. It remains a basic
framework for developing numerical or conceptual
clustering systems because various possibilities of distance
and prototype choice [2].

However, K-means clustering is very sensitive to the
designated initial starting points as cluster centers. K-means
clustering generates initial clusters randomly. If a randomly
designated initial starting point closes to a final cluster
center, then K-means clustering can find the final cluster
center. It however is not always. If a designated initial point
is far from the final cluster center, it will lead to incorrect
clustering results [11]. Because of initial starting points
generated randomly, K-means clustering does not guarantee
the unique clustering results [13]. K-means clustering is
difficult to reach global optimum, but only to one of local
minima [7]. The better results of K-means clustering can be
achieved after computing more than one times. However, it
is difficult to decide the execution limit, which gives the
best performance [17]. The cluster initialization algorithms
for K-means tried to apply heuristic mechanisms to avoid
the uncertainty of n times trial of K-means execution.

Several methods proposed to solve the cluster
initialization for K-means clustering. A recursive method
for initializing the means by running k clustering problems
is discussed by Duda and Hart (1973). A variation of this
method consists of taking the entire data into account and
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then randomly perturbing it & times [13]. Bradley and
Fayyad (1998) proposed an algorithm that refines initial
points by analyzing distribution of the data and probability
of data density [3]. Pend et al. (1999) presented empirical
comparison for four initialization methods for K-means
clustering those are random, Forgy approach, Mac Queen
approach, and Kaufman approach [5].

Our previous works have been dealing for K-means
Optimization. Barakbah and Helen (2005) presented a new
algorithm, called as Optimized K-means, that spreads the
initial centroids in the feature space so that the distances
among them are as far as possible [14]. Barakbah et al.
(2005) presented the optimization of initial starting points
for K-means using Simulated Annealing [15]. Barakbah
(2006) proposed a new algorithm to optimize the initial
centroids for K-means by separately locating them as far as
possible in data distribution [16]. By considering the
computation of K-means optimization, Barakbah and Arai
presented a fast algorithm for designating the initial
centroids by embedding hierarchical algorithm into K-
means clustering [17].

In this paper we propose a fast algorithm for optimizing
the initial centroids for K-means by improving our previous
work Pillar algorithm presented in [19]. The Pillar
algorithm [19] is inspired by the designation of pillars’
placement in a house or building. The algorithm considers
the pillars which should be located as far as possible from
each other to withstand against the pressure distribution of a
roof, as the number of centroids amongst the data
distribution. Therefore, the Pillar algorithm determines the
position of initial centroids by calculating the accumulated
distance metric between each data and all previous
centroids, and then, a data point which has the maximum
distance will be selected. This algorithm is also robust
whereby it has a mechanism to avoid outlier data being
chosen as the initial centroid. However, the algorithm takes
highly computational time for clustering huge data which
often have many outliers. In this paper, we improve our
Pillar algorithm by modifying the status of each initial
centroids” neighbors after applying the ourlier detection
mechanism. The improvement is very essential to speed up
the computional time of K-means optimization by Pillar
algorithm, especially for huge and complex data sets.

We organize this paper as follows. In Section 2, the Pillar
algorithm is described. Section 3 discusses the improvement
of our Pillar algorithm. Section 4 describes the wvalidity
measurements those are used in the experiments. Section 5
describes the experimental results using several benchmark
datasets as well as image data with several comparing
algorithms, and then followed by concluding remarks in
Section 6.

IL.PILLAR ALGORITHM

This section describes the basic concepts of our Pillar
algorithm to designate the initial centroids, a mechanism of
outlier detection, and the improvement of the Pillar
algorithm. This section also contains a complexity analysis
of the proposed algorithm and a sequential logical flow for
the proposed approach.

A. Basic Concept

The K-means algorithm generates the initial centroids
randomly and fails to consider a spread out placement of
them spreading within the feature space. In this case, the
initial centroids may be placed so close together that some
become inconsequential. Because of this, the initial
centroids generated by K-means may be trapped in the local
optima. The Pillar algorithm proposed a method of placing
the initial centroids whereby each of them has a farthest
accumulated distance between them.

The Pillar algorithm is inspired by the thought process of
determining a set of pillars’ locations in order to make a
stable house or building. Fig. | illustrates the locating of
two, three, and four pillars, in order to withstand the
pressure distributions of several different roof structures
composed of discrete points. It is inspiring that by
distributing the pillars as far as possible from each other
within the pressure distribution of a roof, the pillars can
withstand the roof’s pressure and stabilize a house or
building.

Fig. 1. Ilustration of locating a set of pillars (white points) withstanding
against different pressure distribution of roofs.

The algorithm considers the pillars which should be
located as far as possible from each other to withstand
against the pressure distribution of a roof, as number of
centroids among the gravity weight of data distribution in
the vector space. Therefore, the Pillar algorithm designates
positions of initial centroids in the farthest accumulated
distance between them in the data distribution.

B. Determining Initial Centroids
First of all, the grand mean of data points is calculated as
the gravity center of the data distribution. The distance
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Fig. 2. Selection for several candidates of the initial centroids

metric D (let D' be D in this early step), is then created
between each data point and the grand mean. A data point
which has the highest distance in D' will be selected as the
first candidate of the initial centroid . Fig. 2a illustrates m
as the grand mean of data points and x which is has the
farthest distance to m is the candidate of the first initial
centroid.

I s 1s not an outlier, it will be promoted to the first
initial centroid ¢;. We then recalculate D (D7 in this step),
which is the distance metric between each data points and
¢;. Starting from this step, we use the accumulated distance
metric DM and assign D’ to DM. The construction of DM is
started from D',

To select a candidate for the second initial centroid, the
same mechanism is applied using DM instead of D. The
data point with the highest distance of DM will be selected
as the second initial centroid candidate x, as shown in Fig.
2b. If x is not classified as an outlier, it becomes ¢,. To
select a next x for the candidate of the rest initial centroids,
D' (where ¢ is the current iteration step) is recalculated
between each data points and c,;,. The D' is then added to
the accumulated distance metric DM (DM € DM + D).
This accumulation scheme can avoid the nearest data points
to c., being chosen as the candidate of the next initial
centroid. It consequently can spread out the next initial
centroids far away from the previous ones. The data points
with the highest distance in DM will then be selected as x,
as shown in Fig. 2c.

If x is not an outlier, it will become ¢, The iterative
process guarantees that all initial centroids are designated.

C. Qutlier Detection Mechanism

To be selected as the initial centroids, the data point
candidate must not be categorized as outlier. We identify an
outlier by considering the number of neighbor points within
the neighborhood boundary. Let n be the number of data
points and & be the number of clusters, we set the number of
neighbors nmin by using a probabilistic parameter « to the
average members of clusters n/k. For assuming the
neighborhood boundary nbdis, we apply a threshold f to
the highest distance in D', as shown in Fig. 4.

To get several data points to be the neighbors inside the
boundary, it needs to calculate a distance metric between all
data points and . However, it can utilize distance metric D
for the next iteration step. In case shown in Fig. 4, the
distance metric between all data points and x can be
acquired from D°. If the number of neighbors inside the
boundary is lower than mmin, x will be classified as an
outlier. When x is considered as an outlier, it will be
redetermined by selecting the second highest distance in D',
This outlier detection mechanism is iteratively executed
until sk can be considered as the initial centroid.

[II. IMPROVEMENT OF PILLAR ALGORITHM

The Pillar algorithm is very effective to position the
initial centroids for K-means and improve the precision of
the clustering results. However, the algorithm takes highly
computational time for clustering huge data which often
have many outliers, since its complexity O((k+h+1) n)
(where A=number of clusters, A=number of outliers, and
n=number of data items) to position the initial centroids. In
this paper, we reduce the complexity of our previous work

Fig. 4. An illustration of the neighborhood boundary
Pillar algorithm by excluding initial
centroids' neighbors from next

complexity will decrease in line with iterations.

the designated
iterations so that the

A. Excluding initial centroids' neighbors

In the Pillar algorithm, when a data item is chosen as a

initial centroid candidate sk, the ourlier detection

mechanism is applied by identifying the neighbors. If the
number of neighbors inside the boundary in nbdis, as shown
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in Fig. 4, is same or higher than nmin, x will be promoted
to an initial centroid ¢, in iteration . Unlike our previous
Pillar algorithm in which D' involves distance calculation
between all data items to ¢, in order to designate next initial
centroid ¢,,;, we improve the algorithm by reducing number
of distance calculation in D'"'. When x is promoted to be ¢,
the neighbors of ¢, inside nhdis is noted. These neighbors
are supposed to belong to ¢, and do not need to involve in
the distance calculation D', By excluding them in D'
number of distance calculations can be reduced for the next
steps. It will decrease the complexity and speed up the
execution time for designating all initial centroids.

B. Algorithm Complexity

The time complexity of the Pillar algorithm is O((k+A+1)
n), where & is number of clusters, »# is number of data items,
and A is number of outliers in the data set. In a case in
which there is no outliers in the data set, the complexity
becomes O((k+1) n), or equal to O((t+1) n), where ¢ is the
number of iterations, since selecting an initial centroid for
each k takes one iteration. For worse case in which there are
number of outliers close to n (h=n), the complexity becomes
~0(n’).

With the improvement of Pillar algorithm by excluding
the initial centroids’ neighbors for each designated initial
centroids, number of data n items will decrease in line with
the iterations. When these initial centroids’ neighbors are
excluded and not involved in the distance calculation for
next steps, n in the iterations will be decreased. The
complexity  of  improved  Pillar  algorithm is
O(n+(hy.n;)+...H(h.n)) where m=...<n;<n, n; is the rest of
number of data items after excluding the i-th designated
initial centroids’ neighbors and h; is number of ourliers
before the i-th designated initial centroids. By this
improvement, in a case in which there is no outliers, the
complexity becomes O(n+n,+...+n;). The complexity will
be =0(n’) for worse case in which number of outliers close
to n.

IV. VALIDITY MEASUREMENTS

For performance analysis, several wvalidity
measures for clustering results; those are variance within
cluster, variance between clusters, sum of squared error,
standard deviation validity index, centroid proximity index,

error ratio and execution time.

wWE  usc

A. Variance Analysis

Variance constraint [9] can express the density of the
clusters with the variance within cluster and the variance
between clusters [6, 13]. The ideal cluster has minimum
variance within cluster to express internal homogeneity and
maximum variance between clusters to express external

homogeneity [12]. Let X={x; | i=1,...,N} be data set, S={s; |

=1,....k} be clustered X where M e X is M={m,; |
j=1,....n(s;)} as members of s, variance within cluster can
be defined as follows:

k

=~ an(v) 3)

where N is number of data points, & is number of clusters,
and n;
given as:

is number of members in i-th cluster, while v, is

2

) 1 nis;)
Vv, = — m,—§, (4)
n(‘s‘.") - 1 ; E.\“I}

where m; is members of i-th clusters.

Variance between clusters then can be defined as follows:
1 &
%= Zn(sl.)(s,. -X) (&)
—lia

B. Sum of Squared Error

The most widely used criterion to quantify cluster
homogeneity is the sum of squared error criterion [9]. It can
be defined as:

konisi)

22|, -5

SSE—"‘— 6
Y (6)

C. Standard Deviation Validity Index
The standard deviation validity index is defined based on

the concepts of the average scattering for clusters and total
separation between clusters [8]. It consists of average
scattering for clusters and total separation between clusters.
The average scattering for clusters is defined as:

scat(k) = Z ||||g((;))|” (M

The definition of total scattering (separation) between
clusters is given as follows:

k k
dis(k) :gﬂz Z s, —S_;-H (8)

min =L\ j=Llj#i
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where D,,. = max(||s,-s|[) 1s the maximum distance
between centroids, and D,,;,, = min(||s;-s|[) is the minimum
distance between centroids. The standard deviation validity
index for k& clusters can be defined as:

SDVI(k) = a . scat(k) + dis(k) 9

where a is a weighting factor equal to dis(c,,,,) where ¢,,,, is
the maximum number of input clusters.

D. Centroid Proximity Index

We propose this kind of validity measurement, called
centroid proximity index, to analyze the closeness of the
final centroids of the clustering result to the centroids of the
real data sets. The CPI is defined as:

(10

k
CPI =min Y (|, 7))
i=1

where ¢; is i-th final centroid of clustering result and r; is i-
th real centroid of datasets.

E. Evror ratio

Because we use several benchmark data sets which are
already classified, the error ratio expresses the error rate of
clustering results compared to the classified labels of the
datasets. The error ratio is defined as:

numberofincorrectresults

(1)

Error= —
numberofdataitems

V.EXPERIMENTAL RESULTS

To establish practical applicability of our Pillar algorithm
with its improvement, we made a series of experiments and
tested its performance on several benchmark datasets,
mostly from UCI repository; those are Ruspini', Fossil [1],
Iris, New Thyroid, Wine, Glass, Heart, and lonosphere [18]
datasets. For comparison purpose, we use the plain data of
each data set without applying the normalization.

We conducted the performance comparison between the
improved Pillar algorithm and several approaches of initial
centroids optimization for K-means; those are Forgy
approach, Mac Queen approach, Kaufman approach,
Refinement approach [3], MDC [16] and K-means using
random initialization. For Forgy, Mac Queen and
Refinement approach, because those approaches cannot give
the unique clustering results, we made 10 times experiments
We
remove parameter § and directly set nbdis with standard
deviation of the data items to their grand mean for

and noticed their average results. We set a=0.1.

representing the density of data distribution. In addition we

" built-in data object in both R and S-plus statistics packages.

also conducted the comparison between our algorithm in
this paper and several clustering algorithms those are
hierarchical clustering (Single, Linkage, Linkage, and
Average Linkage), and possibilistic clustering (Fuzzy C-
Means). We run all programs under Matlab 8.0, with
computer specifications: Intel Core2 Duo, 2 GHz MHz, 3
GB RAM. We use built-in Matlab toolbox for Hierarchical
algorithms. For Fuzzy C-Means, we used a program
developed by David Corney (2000). Aside from that, we
developed our own programs for the rest of algorithms.

Table 1-Table 8 shows the comparison results of validity
measurements for each data set. From those tables, the
precision of our improved Pillar algorithm can reach best
performance in 3 validity measurements on average and
outperform the other comparing algorithms. Fig. 5 and Fig.
6 show the total best achievement of each clustering
algorithm in all validity measurements. In those figures, our
improved Pillar algorithm shows better performance to the
comparing algorithms.
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Fig. 5. Comparison of the total best achievement of each Kmeans optimization
algorithm in all validity measurements
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Fig. 6. Comparison of the total best achievement of each clustering algorithm
in all validity measurements

Table 9 shows the comparison of computational time for
the K-means optimization algorithms. Our improved Pillar
algorithm is able to speed up the computational time of
Kmeans optimization. The improved Pillar algorithm
outperformed the other comparing algorithm in all datasets.

We also made experiments of clustering for image data
using SIMPLIcity dataset of Wang et al. [20]. Fig. 7 shows
one of visual comparisons of image clustering result using
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TABLE
VALIDITY MEASUREMENT IN RUSPINI DATA SET

Algorithm Vi Vi 58E SDIT CPI Error(%)
K-means with random init. 284.50 TETBE.OS5 26932 0.52 23.69 12.8
K-means with Forgy init. 388.01 TT183.15 36731 0.71 51.20 9.33
K-means with Mac Queen init. 436.15 7770416 412.89 0.70 59.00 16.27
K-means with Kaufman init. 181.42 T8190.89 171.75 0.29 0.00 0
K-means with Refinement init. 333.12 T6ER6.69 31535 0.46 34.28 2.53
K-means with MDC init. 181.42 TR190.89 171.75 0.29 0.00 0
Single Linkage 181.42 78190.89 171.75 0.29 0.00 0
Complete Linkage 229.01 76572 48 216.79 0.32 947 4
Centroid Linkage 181.42 78190.89 171.75 029 0.00 0
Average Linkage 181.42 T8190.89 171.75 0.29 0.00 0
Fuzzy C-Means 181.42 78190.89 171.75 0.29 0.00 0
K-means with imprv Pillar algorithm 181.42 78190.89 171.75 0.29 0.00 0

TABLE II

VALIDITY MEASUREMENT IN FOSSIL DATA SET

Algorithm Vi Vi SSE SDVT CPI Error{%)
K-means with random init. 42.92 6696.84 41.44 1.01 16.65 25.52
K-means with Forgy init. 41.45 6178.04 40.02 0.97 10.01 24.37
K-means with Mac Queen init. 43.41 682982 41.91 1.05 19.13 28.85
K-means with Kaufman init. 40.61 6011.59 39.21 0.89 9.52 27.59
K-means with Refinement init. 41.69 6212.71 40.25 0.97 9.12 17.24
K-means with MDC init 4546 T572.06 43 .88 1.11 31.78 32.18
Single Linkage 50.28 T7206.18 48.54 0.69 13.17 13.79
Complete Linkage 43.27 5894.69 41.78 1.25 5.54 16.09
Centroid Linkage 47.33 6713.86 45.70 0.78 9.27 11.49
Average Linkage 45.53 6498 .85 43.96 0.85 6.68 11.49
Fuzzy C-Means 45.46 T7572.06 43.89 1.11 3150 28.74
K-means with imprv Pillar algorithm 40.64 500988 39.24 0.94 .76 25.29

TABLE 11

VALIDITY MEASUREMENT IN IRIS DATA SET

Algorithm Vi Vi SS5E SDVI crr Errori®s)
K-means with random init. 0.59 181.47 0.58 4.81 383 14.73
K-means with Forgy init. 0.76 341.69 0.74 11.24 2.30 14.4
K-means with Mac Queen init. 0.62 31832 0.61 7.80 1.25 14.47
K-means with Kaufman init 0.54 302.23 0.53 5.85 0.51 11.33
K-means with Refinement init. 0.58 309.61 0.57 6.64 0.86 18
K-means with MDC init 0.54 302.49 0.53 5.84 0.52 10.67
Single Linkage 0.97 317.98 0.95 4.34 2.54 32
Complete Linkage 0.61 300.84 0.60 5.22 0.86 16
Centroid Linkage 0.54 302.79 0.53 5.83 0.56 9.33
Average Linkage 0.54 302.79 0.53 5.83 0.56 9.33
Fuzzy C-Means 0.98 38221 0.96 15.65 4.19 14.87
K-means with imprv Pillar algorithm 0.54 302.23 0.53 5.85 0.51 11.33

TABLE 1V

VALIDITY MEASUREMENT IN NEW THYROID DATA SET

Algorithm Vi Vi SSE SDVI CcPI Error(®)
K-means with random init. 136.40 19868.35 134.49 0.43 16.50 19.44
K-means with Forgy init. 136.85 22124.48 134.94 0.46 20.00 21.44
K-means with Mac Queen init. 136.41 20836.21 134.51 0.45 17.38 16.74
K-means with Kaufman init. 136.70 18581.93 134.80 0.44 16.62 14.88
K-means with Refinement init. 137.19 26366.74 135.28 0.48 26.30 30.51
K-means with MDC init. 137.73 27970.57 13581 0.48 29.71 37.21
Single Linkage 278.14 119041.95 274.26 0.81 95.97 29.77
Complete Linkage 166.84 42480.35 164.51 0.40 34.85 28.37
Centroid Linkage 222.60 T8E00.70 219.49 0.17 87.38 2791
Average Linkage 213.55 40171.26 210.57 0.27 61.19 26.05
Fuzzy C-Means 136.24 18621.09 134.34 0.43 13.73 14.42
K-means with imprv Pillar algorithm 136.21 18629.12 134.31 0.42 13.90 13.95

our improved Pillar algorithm and the other comparing
algorithms. We only compared our algorithm to K-means
algorithm with random initilization and K-means with
several initialization algorithms which are Forgy, Mac

Queen and MDC. We cannot compare with the rests of
comparing algorithms because the execution process of
those comparing algorithms got memory problem due to
huge size of image pixel data. In Fig. 7, our improved Pillar
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TABLE V
VALIDITY MEASUREMENT IN WINE DATA SET
Algorithm Vi Vi SSE SDVI CPI Error%)
K-means with random init. 136.40 19868.35 134.49 0.43 16.50 3320
K-means with Forgy init. 136.85 22124 .48 134.94 0.46 20.00 3236
K-means with Mac Queen init. 136.41 20836.21 134.51 0.45 17.38 37.42
K-means with Kaufman it 136.70 18581.93 134,80 0.44 16.62 29.78
K-means with Refinement init. 137.19 26366.74 135.28 0.48 26.30 37.30
K-means with MDC init. 137.73 27970.57 13581 0.48 29.71 42.70
Single Linkage 278.14 119041.95 27426 0.81 95.97 57.30
Complete Linkage 166.84 42480.35 164.51 0.40 54.85 3258
Centroid Linkage 222.60 TRE00.70 219.49 0.17 87.38 38.76
Average Linkage 213.55 40171.26 210.57 0.27 61.19 38.76
Fuzzy C-Means 136.24 18621.09 13434 0.43 13.73 3034
K-means with imprv Pillar algorithm 136.21 18629.12 13431 0.42 13.90 29.78
TABLE VI
VALIDITY MEASUREMENT IN GLASS DATA SET
Algorithm Vi Vi SSE SDVI CPI Error(®s)
K-means with random init. 136.40 19868.35 134.49 0.43 16.50 49.44
K-means with Forgy init. 136.85 22124.48 134.94 0.46 20.00 49.44
K-means with Mac Queen init. 136.41 20836.21 134,51 0.45 17.38 47.80
K-means with Kaufman init 136.70 18581.93 134.80 0.44 16.62 46.26
K-means with Refinement init. 137.19 26366.74 135.28 0.48 26.30 49.39
K-means with MDC init. 137.73 27970.57 13581 0.48 29.71 48.60
Single Linkage 278.14 119041.95 27426 0.81 95.97 63.55
Complete Linkage 166.84 4248035 164.51 0.40 54.85 51.40
Centroid Linkage 222.60 TRE00.70 219.49 0.17 B7.38 63.08
Average Linkage 213.55 40171.26 210.57 0.27 61.19 62.15
Fuzzy C-Means 136.24 18621.09 134.34 0.43 13.73 46.12
K-means with imprv Pillar algorithm 1.80 272.41 1.75 31.49 13.92 48.13
TABLE VII
VALIDITY MEASUREMENT IN HEART DATA SET
Algorithm Vi vy SS5E SDVI CPi Error()
K-means with random init. 136.40 19868.35 134.49 0.43 16.50 41.89
K-means with Forgy init. 136.85 22124 .48 134.94 0.46 20.00 41.89
K-means with Mac Queen init. 136.41 20836.21 13451 0.45 17.38 42.67
K-means with Kaufman init 136.70 18581.93 134.80 0.44 16.62 41.67
K-means with Refinement init. 137.19 26366.74 13528 0.48 26.30 44.89
K-means with MDC init. 137.73 27970.57 13581 0.48 29.71 4222
Single Linkage 278.14 119041.95 27426 0.81 95.97 46.11
Complete Linkage 166.84 42480.35 164.51 0.40 54.85 46.11
Centroid Linkage 222.60 TRE00.70 219.49 0.17 87.38 46.67
Average Linkage 213.55 40171.26 210.57 0.27 61.19 46.67
Fuzzy C-Means 136.24 18621.09 134.34 0.43 13.73 41.11
K-means with imprv Pillar algorithm 1.80 27241 1.75 31.49 13.92 41.67
TABLE VIII
VALIDITY MEASUREMENT IN [ONOSPHERE DATA SET
Algorithm Vi Vi SSE SDVT CPI Errori®s)
K-means with random init. 6.93 829.40 6.89 0.49 2.39 28.92
K-means with Forgy init. 6.93 829.00 6.89 0.49 2.38 28.86
K-means with Mac Queen init. 8.06 1828.71 8.01 0.42 4.09 32.28
K-means with Kaufman init 6.93 828.60 6.89 0.49 2.38 29.06
K-means with Refinement init. 6.93 829.40 6.89 0.49 2.39 28.77
K-means with MDC init. 6.93 829.40 6.89 0.49 2.39 28.77
Single Linkage 9.19 320577 9.14 0.33 6.26 35.61
Complete Linkage B.83 351.26 B.78 0.66 1.68 3533
Centroid Linkage 9.19 320577 9.14 0.33 6.26 35.61
Average Linkage 9.19 320597 9.14 0.33 6.26 3561
Fuzzy C-Means 6.93 830.08 60.89 0.49 2.39 29.06
K-means with imprv Pillar algorithm 6.93 828.60 6.89 0.49 2.38 29.06

improved Pillar algorithm performed the execution time
very fast comparing to the other algorithms and close to

algorithm and MDC are able to cluster the image data
clearly.We also test the computational speed for image data
with different image sizes. Fig. 8 shows the comparison of  the

computational time with different size of image data. Our Table 9 shows the comparison of execution times for



TABLE IX
COMPARISON OF EXECUTION TIMES (IN MS) FOR INITIAL CENTROIDS OPTIMIZATION ALGORITHMS OF K-MEANS FOR EACH DATA SET

Algorithm Ruspini Fossil Iris ThN;rv(;]i d Wine Glass Heart Tonosphere
K-means with random init. 1.56 3.12 12.48 17.16 14.04 14.04 7.8 12.48
K-means with Forgy init. 45.24 40.56 101.4 138.84 131.04 174.72 88.92 157.561
K-means with Mac Queen init. 49.92 40.56 117 145 138.84 193.44 104.52 182.52
K-means with Kaufiman init. 7597.25 6208.84 1876692  37611.84  25662.16 129761.63  10810.87 42931.48
K-means with Refinement init. 1215.25 1230.85 4054.47  12041.72  12072.92 21978.98 6344.56 18453.36
K-means with MDC init. 31.2 46.8 46.8 78 78 187.2 62.4 93.6
K-means with imprv Pillar algorithm 1.56 7.8 14.04 9.36 15.6 21.84 7.8 135.72

performance of K-means. In Fig. 9, the improved Pillar
algorithm can reduce drastically the exponential execution
time of previous Pillar algorithm in line with huge and
complex data.

(a) Image Source (b) K-means with init. (¢) K-means with Forgy

(d) K-means with MacQueen (e) K-means with imprv Pillar

(d) K-means with MDC

Fig. 7. visual comparisons of image clustering result
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Fig. 8. comparison of computational time with different size of image data
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Fig. 9. Comparison time between our previous Pillar algorithm and current
improved Pillar algorithm
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VI. CONCLUSION

The Pillar algorithm is very effective to position the
initial centroids for K-means clustering and improve the
precision of the clustering results. However, the Pillar
algorithm takes highly computational time for clustering
huge data which often have many outliers. In this paper we
present an improvement of our Pillar algorithm to speed up
the computational time. We reduced the complexity of Pillar
algorithm by excluding the initial centroids’ neighbors for
next steps of iterations. By this mechanism, the Pillar’s
complexity  decreased  from  O((k+h+1) n) to
O(n+(h;.ny)+...+(hi.ny)) in which number of involved data
for distance calculation in next steps are reduced. A series
of experiments performed that our improved Pillar
algorithm can optimize the K-means clustering results
quickly.

REFERENCES

[1] C. Yi-tsuu, “Interactive Pattern Recognition,” Marcel Dekker Inc., New
York and Basel, 1978.

[2] H. Ralambondrainy, “A conceptual version of the K-means algorithm,”
Pattern Recognition Lett., 16, 1147-1157, 1995.

[3] P.S. Bradley, UM Fayyad, “Refining initial points for K-means
clustering,” Proc. 15th Internat. Conf. on Machine Learning
(ICML’98), 1998.

[4] G.A. Growe, “Comparing Algorithms and Clustering Data: Components
of The Data Mining Process,” thesis, department of Computer Science
and Information Systems, Grand Valley State University, 1999.

[5] J.M. Pena, J.A. Lozano, P. Larraiiaga, “An empirical comparison of the
initilization methods for the K-means algorithm,” Pattern Recognition
Lett., 20, 1027-1040, 1999.

[6] S. Ray, R.H. Turi, “Determination of number of clusters in K-means
clustering and application in colthe image segmentation,” Proc. 4th
ICAPRDT, pp.137-143, 1999.

[71 B. Kovesi, J.M. Boucher, S. Saoudi, “Stochastic K-means algorithm for
vector quantization,” Pattern Recognition Lett., 22, 603-610, 2001.

[8] M. Halkidi, Y. Batistakis, M. Vazirgiannis, “Clustering algorithms and
validity measures,” Proc. 13th International Conference on Scientific
and Statistical Database Management (SSDBM'01), 2001.

[9] C.J. Veenman, M.J.T. Reinders, E. Backer, “A maximum variance
cluster algorithm,” [EEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 24, no. 9, pp. 1273-1280, 2002.

[10] V.E. Castro, “Why so many clustering algorithms-a position paper,”
ACM SIGKDD Explorations Newsletter, Vol. 4, Issue 1, pp. 65-75,
2002.

[11] Y.M. Cheung, “k*-Means: A new generalized k-means clustering
algorithm,” Pattern Recognition Lett., 24,2883-2893,2003.

[12] A. R. Barakbah, K. Arai, “Identifying moving variance to make
automatic clustering for normal dataset,” Proc. IECI Japan Workshop
2004 (ITW 2004), Musashi Institute of Technology, Tokyo, 2004.

[13] S.S. Khan, A. Ahmad, “Cluster center initialization algorithm for K-
means clustering,” Pattern Recognition Lett., 25, 1293-1302, 2004.



[14]

[15]

[16]

[17]

[18]

[19]

[20]

A.R. Barakbah, A. Helen, “Optimized K-means: an algorithm of initial
centroids optimization for K-means,” Proc. Soft Computing, Intelligent
System, and Information Technology (SIIT) 2005, pp.2-63-66, Petra
Christian University, Surabaya, 2005.

A.R. Barakbah, A. Fariza, Y. Setiowati, “Optimization of Initial
Centroids for K-means using Simulated Annealing,” Proc. Industrial
Electronics Seminar (IES) 2005, pp.286-289, Electronic Engineering
Polytechnic Institute of Surabaya-ITS, Surabaya, 2005.

AR. Barakbah, “A new algorithm for optimization of K-means
clustering with determining maximum distance between centroids,”
Proc. Industrial Electronics Seminar (IES) 2006, pp.240-244,
Electronic Engineering Polytechnic Institute of Surabaya-ITS, Surabaya,
2006.

A.R. Barakbah, K. Arai, “Hierarchical K-means: an algorithm for
centroids initialization for K-means,” Reports of the Faculty of Science
and Engineering, Saga University, Japan, Vol. 36, No. 1,2007.

UCI Repository (http://www.sgi.com/tech/mlc/db/)

A.R. Barakbah, Y. Kiyoki, “A Pillar Algorithm for K-Means
Optimization by Distance Maximization for Initial Centroid
Designation,” The IEEE Symposium on Computational Intelligence
and Data Mining, Nashville, 2009.

J.Z. Wang, J. Li, G. Wiederhold, “Simplicity: Semantics-sensitive
integrated matching for picture libraries”, IEEE Transactions on
Pattern Analysis and Machine Intelligence, 23 (9), pp. 947-963, 2001.




